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Abstract—Convolutional neural networks (CNNs) have 

achieved great success in image process and computer vision. 

Image deblurring problems addressed by CNNs can achieve 

better prediction accuracy than those that use traditional 

methods. CNNs, especially multiscale deep CNNs, nonetheless 

require substantial memory and computational resources to 

perform image deblurring, thus hindering their deployment in 

real-time applications. Computation-efficient networks lack the 

capability to deal with large-scale datasets and thus cannot 

generate accurate restoration results in many cases. To this end, 

we propose an efficient and accurate deep learning framework 

for image deblurring named MRFNet with three main features. 

1) The framework is the first of its kind to utilize the multipath 

refinement fusion (MRF) network for image deblurring. 2) The 

MRFNet combines lightweight convolution and residual 

connection as a means of enhancing model performance. 3) The 

designed scale refinement loss function accelerates the training 

loss of the MRF. Comparative experiments on two popular 

datasets, namely, GOPRO and VisDrone, had been conducted 

to demonstrate the effectiveness of MRFNet. The experimental 

results indicate that MRFNet can achieve state-of-the-art 

prediction accuracy at a faster speed than the other deblurring 

models. The MRFNet code is available at 

https://github.com/zhangzhichao19020123/MRFNet. 

I. INTRODUCTION 

Image processing and computer vision tasks have been 
widely adopted as deep learning methods. Image deblurring 
is a classical and important problem in industrial areas, such 
as aviation photo restoration, robotics recognition, and 
autonomous driving [1]. 

Blur kernels are adopted by traditional methods to 
simplify the problem of deblurring. However, the existing 
methods are limited because they merely classify blurred 
images as uniform, non-uniform, depth-aware, and so on. 
However, blurred images in real-world scenarios consist of 
mixed types of blurs, such as natural motion blur or camera 
shake blur, and the use of blur kernels is hardly considered. 

Deep learning approaches have been proposed for 
handling complicated natural blurs. These methods use 
convolutional layers to extract features by scanning blurred 
and sharp images, followed by the use of deconvolution layers 
to fuse and record the learning results. Schuler et al. [11], 
Zhang et al. [12], Xu et al. [4] have adopted this two-stage 
traditional procedure by using a simple encoder and decoder 
neural network. However, these methods still use the 
traditional framework whose prediction performance remains 
to be low. 

Inspired by the idea described above, Kupyn et al. [5] 
designed a new framework for deblurring that could calculate  
∗ Authors have contributed equally. 

† Corresponding authors.  
1 Department of Computer Science, National University of Defense 

Technology, yinxiaoqing89@163.com 

the differences of generative and original images.The network 
has since been called generative adversarial network (GAN). 
Since GAN’s development, many other complicated GAN 
networks, such as DeblurGAN ver. 2 [6], have been used to 
deblur the images. However, GAN requires a large amount of 
computing and memory resources in the process of 
comparing the generated and real images of the discriminator. 
Moreover, loss exceeds the speed and memory usage of 
neural networks when loading the model and extracting the 
features. 

With the advancements in the design of complicated 
network models, end-to-end deep learning approaches have 
also been proposed for deblurring. Such complicated 
networks can be classified into four classes: multiscale 
network, recurrent network, multipatch network, and scale-
iterative network.  

The frameworks of Nah et al. [7] and Lin et al. [8] entailed 
a multiscale style. The main idea of their framework is to 
implement the coarse-to-fine strategy to deblur the images in 
consecutive stages. The coarse stage obtains features by using 
scales, then the features are halved in a series of steps. The 
fine stage learns the larger-scale features with the aid of the 
coarse features until the original size is reached. The coarse-
to-fine mechanism needs to be performed directly via the 
scale-cascaded structure. Thus, despite the fine results, the 
network’s size and depth eventually become excessive, 
leading to high GPU memory consumption. 

Multipatch networks had been proposed by Nekrasov [9] 
and Zhang et al. [10]. Both of them applied the recurrent 
method to reuse the last-turn results in the next round as a 
means of refining the final checkpoints. Images are separated 
into patches and extracted features, and the meaningful results 
are sent to the next iteration for further enhancement. This 
method can help to reduce the parameters by learning from 
patches in one round. However, the approach is hindered by 
high calculation cost and low efficiency. 

Here, we combine the previous ideas into a single network 
and propose the MRFNet. In particular, we propose a network 
that can learn features by using the multipath. Each path fuses 
the results from both the lower-scale refinement patches and 
the last-step results to yield higher-latent prediction results. 
Each path is immediately calculated using the L2 weight loss 
function. We overcome the multiscale parameter problem and 
the recurrent architecture’s low-efficiency issue by designing 
the core module of multipath refinement fusion (MRF) 
networks. The contributions of this research are as follows: 

• We propose a novel MRF network architecture for 
image deblurring. Compared with the previous 
multiscale and recurrent architectures, our model is 
more efficient and performs well in terms of image 
quality and inference speed. Experiments have been 
conducted to prove the significant impact of the 
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• lightweight process and the residual connection on 
the enhanced accuracy and decreased complexity of 
the proposed network. 

• An MRF unit that can fuse the results to the features 
extracted from the multilevel path is designed. The 
lightweight process and the residual connection have 
been reconstructed accordingly in the network 
architecture. The modules not only can solve the 
multilevel requirement of concatenating different 
kinds of feature maps but can also help to train a 
deeper and fast network. 

• State-of-the-art deblurring performance can be 
achieved according to the quantitative numerical 
analyses of PSNR and SSIM. A scale refinement loss 
function has been developed for VisDrone and 
GOPRO datasets, in which motion blur and Gaussian 
blur are both included. 

The rest of the paper is organized as follows. We 
introduce the related work on image deblurring in network 
architectures in Section II. Section III introduces the 
methodology and the implementation of our proposed 
network. We discuss our experimental results in Section IV. 
We conclude the paper in Section V. 

II. RELATED WORK  

Traditional methods [1],[11]–[15] rely on blur kernel 
estimation to reconstruct images by focusing on specific types 
of blurs. Recent studies have attempted to settle the 
restoration problem by adopting multiscale convolutional 
neural networks to deblur the images. In these end-to-end 
frameworks, blurred images are used as inputs for the neural 
network to immediately generate clear images [16]–[10]. 
Compared with the traditional methods, CNNs can greatly 
improve training speed, but its prediction accuracy is 
inefficient, and considerable GPU memory is occupied.  

 

Fig. 1: Various deblurring network architectures. (a) Nah et al. [7] proposed 

the multiscale architecture to extract features from different scales. (b) Tao 
et al. [20] proposed the recurrent architecture, in which the next round of 

training can be aided by the last-round results. (c) Zhang et al. [10] utilized 

the multipatch architecture to directly extract features from image pairs by 
cropping images in different scales. (d) Ye et al. [21] used the scale-iterative 

architecture to train the model with an upsampling path with aid of the last-

iterative middle results. We combine the ideas of (a) and (b) and propose a 
new framework whose core module involves the MRF and call it MRFNet. 

The MRFNet can operate in both multiscale and recurrent manner.  

As for the feature extraction, Image deblurring CNNs can 
be divided into GAN network, multiscale network, recurrent 
network, multipatch network, and scale-iterative architecture.  

GAN [5],[22] is a conditional adversarial network that 
uses a multicomponent loss function. It is a method involving 
blind deblurring without the use of a blur kernel. During the 
training process, a discrimination network is introduced for 
the comparison between blur and original images. GAN 
retains most of the texture details in the images, and it can be 
applied to different sizes of images. However, this method 
takes a long time in generating images and computing the 
image differences. 

By scaling an image into different sizes, multiscale 
networks [7],[8],[23] are able to extract various features from 
each scale, as shown in Fig. 1(a). The input images are 
converted into feature maps, then scales are used to halve the 
feature maps at the next level. In multiscale detection, the 
various scale features are fused by different methods. The 
various scale features contain a large quantity of information, 
suggesting high accuracy. However, the multiscale strategy 
strictly requires the features to be extracted from the small 
scale to the large scale, which means that large-scale 
concatenating needs to wait for the computing results from 
the small scales, resulting in slow training speed. 

An input layer, a loop hiding layer, and an output layer 
constitute a recurrent network [20],[24],[25], as shown in Fig. 
1(b). Recurrent networks can learn features and long-term 
dependencies in sequence. However, as the number of 
network layer increases, so does complexity. The increase in 
the number of layers or circular connections deepens the 
network, thus enabling the network to provide multilevel 
feature extraction. As the concatenating of recurrent networks 
relies heavily on last-round results, the process worsens if 
invalid features are extracted in these last-round results, then 
the deblurring inference becomes extremely unstable if some 
image restorations have poor quality. 

DMPHN [10] is a CNN model that appears to be simple 
but operates as an effective multipatch network [10],[26],[27], 
as shown in Fig. 1(c). An input image is divided into different 
sizes each time, then the features are extracted by the 
multiscale architecture. Although DMPHN has attained 
remarkable progress in terms of computational effectiveness, 
its precision is low.  

Ye et al. [21] proposed a scale-iterative network [21],[28] 
to restore sharp images in iteratively, as shown in Fig. 1(d). 
The super-resolution structure of the upsampling layer is 
adopted between two consecutive scales to restore the details. 
Image features are extracted from the small scale to the large 
scale, with the aim of reconstructing high-resolution images 
from low-resolution images. Then, the downsampling part 
starts to restore the image until its size equals that of the 
original image. Along with the configurable settings, the 
scale-iterative network has the advantages of being able to use 
different scales; moreover, its weight sharing can be 
preserved, and its training process is flexible. However, the 
method fails to achieve high deblurring precision and network 
efficiency, and hefty memory is needed for the iterative 
calculation. 
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III. MODEL DESIGN AND IMPLEMENTATION 

An MRFNet has been extensively constructed to ensure 
the balance between accuracy and speed, as these aspects are 
currently lacking in the existing studies. We first exploit the 
recurrent and multiscale strategies to train the network. Then, 
a structure with a branch depth and fusion unit is built on the 
basis of the lightweight process, the MRF unit, and the remote 
residual connection. Finally, a scale refinement loss function 
is used to train the network in a coarse-to-fine manner.  

A. Multiscale and Recurrent Learning 

Instead of stacking the encoder and decoder processes to 
directly perform deblurring refinement, the recurrent and 
multiscale learning strategies were applied in this study. The 
basic idea of the multiscale learning strategy is for the top 
network to extract features from the large-coarse scale maps 
and the bottom network upsampling results. Meanwhile, in 
the recurrent learning strategy, the bottom layer acquires 
fusion information from the small refinement maps and the 
top feedback. In our work, the two strategies were combined 
by designing four refinement paths to extract features in 
different scales instead of directly predicting the whole 
deblurred image. In our method, the top network only needs 
to focus on learning highly nonlinear residual features, which 
is effective in restoring deblurred images in a coarse-to-fine 
manner. The architecture of the proposed MRFNet is shown 
in Fig. 2. 

 
Fig. 2:  MRF framework. The image is separated into different scales from 
top to bottom. Blue line refers the extraction path of extracting features from 
scales. Then, the blocks of MRF fuse the recurrent last-round results (purple 
line) and the upsampling feature maps (green line) as a single refinement 
process. The total four refinement paths finally compute the loss in the scale 
refinement loss function, then the best deblur results are obtained.  

In the multipath input stream illustrated in Fig. 3(d), the 
upper MRFNet layer takes the left and right images as the 
input and processes the deblur datasets into a total of four 
scales, i.e., k is from 2 to 4.  

The four-scale blur feature maps are denoted as bk, while 
the refinement results are denoted as lk. First, the k level of the 
multipath input stream concatenates the same scale feature 
maps bk and the upsampling feature maps lk+1 as middle 
feature maps, which is denoted as ck.  

                            𝑐𝑘 = 𝑏𝑘 ⊕ 𝑙𝑘+1  (2 ≤ 𝑘 ≤ 4)                (1) 
Then, the fusion unit adds both ck and the last-round 

results lk-1 as the final result, which is denoted as lk. This 

process briefly describes how the refinement fusion path 
works. The whole process can be calculated as  

                         𝑙𝑘 = 𝑐𝑘 + 𝑙𝑘−1  (2 ≤ 𝑘 ≤ 4)                     (2) 

B.  Lightweight Process and MRF 

A large number of parameters and floating-point 
operations of the original MRF network originates from the 
commonly used 3 × 3 convolution. Therefore, we focus on 
replacing these elements with simpler counterparts without 
compromising performance. 

The original design of an MRF network is to use an 
encoder–decoder structure equipped with four feature 
extraction and downsampling layers.  

Each path has a fusion unit. The basic block uses 3 × 3 
convolution, which we call the fusion unit. Here, the 1 × 1 
fusion unit in Fig. 3(a) is replaced with 3 × 3 convolution. 

A chained residual pool (CRP) is also considered [35] to 
naturally illustrate why the lightweight process works and 
how the former three units are reshaped. The lightweight 
process is applied to the CRP unit by substituting the 5 × 5 
and 3 × 3 convolution with the 5 × 5 and 1 × 1 convolution in 
Fig. 3(b).  

The refinement path adopts a convolutional layer with a 
stride of 1 followed by a convolution layer with a stride of 2 
such that they consistently shrink the feature map size by half 
[29]. The two convolution layers act as a residual connection 
unit (RCU) [35]. Two RCUs are installed in the encoder, 
while three RCUs are installed in the decoder. All of the 
blocks use 1 × 1, 3 × 3, and 1 × 1 convolutions compared with 
those in the RCU that use 3 × 3 and 3 × 3 convolution. We 
call the two convolution layers as the lightweight residual 
connection unit (LWRCU), as illustrated in Fig. 3(c).  

 
Fig. 3: Different parts of the network. (a) Fusion unit, (b) improved CRP 
module, (c) lightweight network structure of RCU, and (d) MRF unit. 

TABLE I: Specific parameters of the MRFNet. 

Network Kernel Stride Padding Network Kernel Stride Padding 

Conv1 5×5×32 1 2 conv_r2_m2 1×1×128 1 1 

Conv2 1×1×64 1 1 conv_r2_m3 3×3×128 1 1 

Conv3 5×5×128 2 2 conv_r2_m4 1×1×128 1 1 

Conv4 1×1×128 1 1 deconv2 4×4×64 1 2 

Conv5 3×3×256 1 2 conv_r3_1 3×3×64 1 1 

Conv6 1×1×256 1 1 conv_r3_m1 3×3×64 1 1 

Conv7 3×3×256 1 2 conv_r3_m2 1×1×64 1 1 

Conv8 1×1×256 1 1 conv_r3_m3 3×3×64 1 1 

conv_r1_1 3×3×256 1 1 conv_r3_m4 1×1×64 1 1 

conv_r1_m1 3×3×256 1 1 deconv3 4×4×32 1 2 

conv_r1_m2 3×1×256 1 1 conv_r4_1 3×3×32 1 1 

conv_r1_m3 3×3×256 1 1 conv_r4_m1 3×3×32 1 1 

conv_r1_m4 3×1×256 1 1 conv_r4_m2 3×3×32 1 1 

deconv1 4×4×128 1 2 conv_r4_m3 1×1×32 1 1 

conv_r2_1 3×3×128 1 1 conv_r4_m4 3×3×32 1 1 
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Intuitively, a convolution with a relatively large core size 
is designed to increase the size of the receiving field (as well 
as the global context coverage). The 1 × 1 convolution can 
only locally transform the features of each pixel from one 
space to another. Here, we empirically prove that the 
replacement with 1 × 1 convolution would not weaken 
network performance. Particularly, we replace the 3 × 3 
convolution in the CRP and the fusion block with a 1 × 1 
counterpart, and we modify the RCU to LWRCU with a 
bottleneck design, as shown in Fig. 3(c). In using this method, 
we can reduce the number of parameters by more than 50% 
and the number of triggers by more than 75% (Table I). The 
convolutions have been shown to save considerable 
computation without sacrificing performance. 

We also enhance the MRF unit illustrated in Fig. 3(d). 
Deep residual networks obtain rich feature information from 
multi-size inputs [30]. The residual block originally derived 
in for the image classification tasks is widely used to learn 
robust features and train deeper networks. Residual blocks 
can well address vanishing gradient problems. Thus, we 
replace the connection layer with the MRF unit. 

Here, the MRF is specifically designed as a combination 
of multiple convolution layers (conv-f-1 to conv-f-5), and 
each convolution layer is followed by a ReLU activation 
function. Conv-f-2 uses feature maps generated by Conv-f-1 
to generate more complex feature maps. Similarly, conv-f-4 
and conv-f-5 continue to use the feature map generated by 
conv-f-3 for further processing. Finally, the feature maps 
obtained from multiple paths are fused together. The specific 
calculation expression is as follows: 

           𝑦 = 𝑓2(𝑓1(𝑥)) + 𝑓4 (𝑓3 (𝑓2(𝑓1(𝑥))))              (3) 

where f, x and y represent the convolution operation, the 
characteristic graph of the input, and the characteristic graph 
of the output, respectively. 

We construct a residual connection in each path of the 
MRFNet. In the process of forward transmission, the remote 
residual connections transmit low-level features, which are 
used to refine the visual details of the coarse high-level 
feature maps. The residual connections allow the gradients to 
propagate directly to the early convolution layers, thus 
contributing to effective end-to-end training.  

We set the number of paths from 1 to 6 for the multipath 
process. The operation takes up the least parameters when the 
paths are equal to 3, whereas the best performance is achieved 
when the paths are equal to 4. When the number of paths is 
less than 3, the extracted features are not accurate, and the 
training loss remains at a high level all of the time. When the 
number of paths exceeds 4, the deblurring encounters severe 
performance degradation. To this end, we choose the four-
path refinement setting as the final backbone. 

C. Loss Function Design 

Given a pair of sharp and blurred images, MRFNet takes 
these images as the input and produces four groups of feature 
maps in different scales. Assume that the input image size is 

H × W. The four scales of the feature maps are H/4 × W/4，
H/8 × W/8, H/16 × W/16, and H/32 × W/32. In training the 
MRFNet in an end-to-end manner, we adopt the L2 loss 
between the predicted deblurring result map and the ground 
truth as follows: 

                𝐿(𝜃) =
1

2𝑁
∑ ||𝑥𝑠

𝑖 − 𝐹(𝑥𝑙
𝑖)||2

𝑁

𝑖=1
                    (4) 

where θ is the parameter set, xs is the ground truth patch, and 
F is the mapping function that generates the restored image 
from the N-interpolated LR training patches xl. Here, the 
patch size is defined at different levels. 

The scale refinement loss function is useful in learning the 
features in a coarse-to-fine manner. Each refinement path has 
a loss function that can be used to evaluate the training 
process. When others adopt a single final L2 loss function, 
our scale refinement loss function computes the results in 
different scales, which leads to a much faster convergence 
speed and an even higher inference precision. 

              𝐿𝑓𝑖𝑛𝑎𝑙 =
1

2𝐾
∑

1

𝑐𝑘𝑤𝑘ℎ𝑘

||𝐿𝑘
 − 𝑆𝑘||2

𝐾

𝑘=1
        (5) 

where Lk represents the model output of the scale level k, and 
Sk is the k-scale sharp maps.  

The loss at each scale is normalized by the number of 
channels Cs, width Ws, and height Hs. 

IV. PERFORMANCE EVALUATION 

In this section, we compare MRFNet to the recently 
adopted methods of DeblurGAN, DMPHN, and SIUN in 
terms of accuracy and time efficiency. 

A. Experimental Setup 

We implement our MRFNet by using Caffe. The model is 
trained with Adam (β1 = 0.9, β2 = 0.999). In the training 
process, the images are randomly cropped to 256 × 256. The 
batch size of 16 is used for the training in four NVIDIA 
RTX2080Ti GPUs. At the beginning of each epoch, the 
learning rate is initialized as 10−4 and subsequently decayed 
by half every 10 epochs. We train 70 epochs for VisDrone and 
50 epochs for GOPRO.  

For the time efficiency aspect, we evaluate the inference 
time of the existing state-of-the-art CNNs on RTX2080Ti 
GPUs with 11 GB of memory. 

B. Dataset 

We use two public datasets to train and evaluate the 
performance of MRFNet. The first dataset is VisDrone, which 
provides synthetic blur techniques. The second dataset is 
GOPRO, which is captured in real-world scenarios. 

  
(a) Sharp image (b)Random deviation 

  
(c) Change blur kernel size (d) Change shaking angle 
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(e) Change shaking length (f)Motion blur 

Fig. 4:  Overview of dataset augmentation by changing the parameters. 
The first column shows a sharp image, an image blurred by changing the 
blur kernel size, and an image blurred by altering the blur shaking length. 
The second column shows the blurred image added with random standard 
deviation, in which the image is blurred by changing the shaking angle. The 
last image is generated by real motion blur.  

The benchmark dataset of VisDrone consists of 288 video 
clips formed by 261,908 frames and 10,209 static images. The 
dataset, which was captured by various drone-mounted 
cameras, covers a wide range of elements, including location 
(taken from 14 different cities separated by thousands of 
kilometers in China), environment (urban and country), 
objects (pedestrian, vehicles, or bicycles.), and density (sparse 
and crowded scenes). The dataset was collected using various 
drone platforms (i.e., drones of different models) in different 
scenarios under various weather and lighting conditions.  

We produce the VisDrone blur dataset by using different 
methods, including Gaussian blur. Several data enhancement 
techniques can be utilized to prevent our network from 
overfitting. In terms of geometric transformation, the images 
are flipped horizontally, vertically, and rotated at random 
angles. For the colors, the RGB channels are replaced 
randomly. For the image color degradation, the saturation in 
the HSV color space is multiplied by a random number in 
[0,5]. In addition, Gaussian blur is added to the blurred image. 
Finally, to ensure that our network is robust to noise of 
different intensities, the standard deviation of noise is also 
randomly sampled from the Gaussian distribution N (0-1).  

The GOPRO dataset contains images with changeable 
motion blurs. GOPRO cameras can record sets of sharp 
information that are integrated over time to generate blurred 
images rather than using a preset kernel to blur the generated 
images. When the camera sensor of GOPRO receives light 
during exposure, it accumulates a clear image stimulus each 
time, resulting in a blurred image [31]. 

C. Comparative Experiments 

We conduct comparative experiments with DeblurGAN, 
DMPHN, and SIUN to verify the performance of our model. 
Our proposed MRFNet can achieve state-of-the-art 
performance compared with SIUN on VisDrone. The values 
of PSNR and SSIM are much higher than DeblurGAN and 
DMPHN, suggesting the advantage of our method in handling 
Gaussian blurs. Moreover, our method performs better than 
SIUN and DMPHN and even much better than DeblurGAN 
in dealing with the motion blurs of GOPRO. The trends in 
Table II prove the superiority of the MRFNet framework 
based on the PSNR and SSIM values. 

TABLE II. Testing results of the blurred image datasets and their PSNR and 
SSIM values. 

Method GOPRO VisDrone 
PSNR SSIM PSNR SSIM 

deblur GAN 28.22642 0.747912 28.29447 0.609642 
DMPHN 34.21846 0.898285 28.54136 0.526301 

SIUN 34.46135 0.900913 28.28039 0.543417 
Our model 34.63429 0.907881 29.40845 0.862474 

D. Ablation Experiments 

The original MRF network used as the benchmark is 
denoted as RefineNet. From this original RefineNet, we add 
the lightweight process to the benchmark and denote it as 
LWRefineNet. Then, we add the remote residual connection 
to the refinement path and residual connection to fusion unit 
and denote it as RCRefineNet. Finally, we combine 
lightweight and residual strategy to the benchmark network 
and define it as MRFNet. 

TABLE III. Memory consumption of graphics cards by different methods  

Method GOPRO VisDrone 
Network(MB)+Batch(8) Network(MB)+Batch(16) 

deblur GAN 4538 6012 
DMPHN 6541 7329 

SIUN 8399 8561 
Our model 5452 5898 

As shown in Table III, DeblurGAN requires the least GPU 
memory usage at 4538 MB, while our method requires 
slightly higher GPU memory usage than DeblurGAN in 
GOPRO. For the VisDrone dataset, our network consumes 
the least GPU memory for the batch size of 16. The 
lightweight process can reduce the parameters of the model, 
thus contributing to the low-memory requirement.  

TABLE IV: Average time of inferring images. 

Method GOPRO VisDrone 
InferTime(s) InferTime(s) 

Deblur GAN 2.346 2.144 
DMPHN 1.886 0.764 

SIUN 0.684 0.357 
LWRefineNet 0.494 0.319 

As shown in Table IV, LWRefineNet is the fastest method 
in terms of the time of loading the network model and the 
inferences. The inference is run on GTX1650 4G GPU. The 
image size from GOPRO is 1280 × 768, while that from 
VisDrone is 256 × 256. 

TABLE V: Quantitative numerical results on PSNR and SSIM.  

Method GOPRO VisDrone 
PSNR SSIM PSNR SSIM 

RefineNet  34.17826 0.894369 28.73991 0.854758 
LWRefineNet 34.21445 0.906998 29.24461 0.860164 
RCRefineNet  34.39430 0.903012 29.03971 0.858601 

MRFNet  34.63429 0.907881 29.40845 0.862474 

As shown in Table V, the LWRefineNet and 
RCRefineNet perform slightly better than RefineNet. 
MRFNet has the most significant numerical results.  

As shown in Fig. 5, our scale refinement loss function 
takes each sub-task as an independent component within a 
single unified task, allowing the training process to converge 
more rapidly and perform better than those of the other 
methods. The training losses of the other approaches decrease 
remarkably at the first round and consistently stay at 6% with 
a smooth trend in the following training courses. Our method, 
aided by the loss weight scheduling technique, exhibits a 
dramatic downward trend and remains at approximately 4%. 
The model accuracy improvements (approximately 10% to 
21%) resulting from the multiple rounds of training for the 
four loss weight groups verify the good convergence and 
advantages of our method’s training strategy. 

The experimental results indicate that MRFNet can 
achieve considerable precision. Furthermore, MRFNet runs 
much faster than the other deblurring models, such as SIUN 
and DMPHN. Compared with DeblurGAN, the proposed 
MRFNet model performs well both in terms of speed and 
deblurring quality of images. Owing to the added lightweight 
process, the GPU memory’s occupation remains at a low level. 
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Fig. 5:  Training loss of the four methods. Only the first two epochs 

are shown. 

 
(a) Input image 

 
(b) DeblurGan 

 
(c) DMPHN 

 
(d) SIUN 

 
(e) Our method 

Fig. 6: Visual effects of different methods. From top to bottom: blurred 
image, results of DeblurGAN, DMPHN, SIUN and ours. The left images are 
global deblur results, while local restoration details are shown on the right. 
Our results show clear object boundaries without artifacts. 

Our method can also recover more details and achieve 
relatively high SSIM and PSNR values. Figs. 6 and 7 show 

that results of the other models whose images remain unstable 
and sometimes contain artifacts and color distortions, whereas 
the MRFNet performs image deblurring in a stable and sharp 
manner. For instance, the handwriting and flags in Fig.6 and 
the details in the streets in Fig. 7 are processed to perfect state 
by MRFNet.  

  
(a) Input image (b) Ground truth 

  
(c) DeblurGAN (d) DMPHN 

  
(e) SIUN (f) Ours 

Fig. 7: Results of comparative experiments. Our restored images show 
vivid colors and sharp details. 

V. CONCLUSION AND FUTURE WORK 

In this study, we propose an efficient yet accurate 
framework called the MRFNet. The proposed network 
exploits the MRF, lightweight process, remote residual 
connection, and scale refinement loss function to enable the 
model to handle motion and Gaussian blur scenarios while 
preserving its fast inference speed. We have compared 
MRFNet with existing state-of-the-art models on two popular 
datasets.  

In the future, we will develop fast deblurring inference of 
MRFNet on edge devices. As computational capability will 
likely be much lower than that of GPUs used in our 
experiments, the techniques of model compression, including 
pruning, quantization, and so on, will also be explored. We 
will also adapt this model to video deblurring or the 
deblurring of inpainting results at the post-processing stage.  
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