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Abstract— We present an approach to continuous perception
for robotic laundry tasks. Our assumption is that the visual
prediction of a garment’s shapes and weights is possible via a
neural network that learns the dynamic changes of garments
from video sequences. Continuous perception is leveraged
during training by inputting consecutive frames, of which
the network learns how a garment deforms. To evaluate our
hypothesis, we captured a dataset of 40K RGB and 40K depth
video sequences while a garment is being manipulated. We
also conducted ablation studies to understand whether the
neural network learns the physical and dynamic properties of
garments. Our findings suggest that a modified AlexNet-LSTM
architecture has the best classification performance for the
garment’s shape and weights. To further provide evidence that
continuous perception facilitates the prediction of the garment’s
shapes and weights, we evaluated our network on unseen video
sequences and computed the ’Moving Average’ over a sequence
of predictions. We found that our network has a classification
accuracy of 48% and 60% for shapes and weights of garments,
respectively.

I. INTRODUCTION

Perception and manipulation in robotics are an interactive
process which a robot uses to complete a task [1]. That
is, perception informs manipulation, while manipulation of
objects improves the visual understanding of the object.
Interactive perception predicates that a robot understands
the contents of a scene visually, then acts upon it, i.e.
manipulation starts after perception is completed. In this
paper, we depart from the idea of interactive perception and
theorise that perception and manipulation run concurrently
while executing a task, i.e. the robot perceives the scene and
updates the manipulation task continuously (i.e. continuous
perception). We demonstrate continuous perception in a de-
formable object visual task where a robot needs to understand
how objects deform over time to learn its physical properties
and predict the garment’s shape and weight.

Due to the high dimensionality of garments and com-
plexity in scenarios while manipulating garments, previous
approaches for predicting categories and physical properties
of garments are not robust to continuous deformations [2],
[3]. Prior research [4], [2], [5] has leveraged the use of
simulated environments to predict how a garment deforms,
however, real-world manipulation scenarios such as grasping,
folding and flipping garments are difficult to be simulated
because garments can take an infinite number of possible
configurations in which a simulation engine may fail to
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capture. Moreover, simulated environments can not be fully
aligned with the real environment, and a slight perturbation
in the real environment will cause simulations to fail. In this
paper, we instead learn the physical properties of garments
from real-world garment samples. For this, garments are
being grasped from the ground and then dropped. This
simple manipulation scenario allows us to train a neural
network to perceive dynamic changes from depth images,
and learn intrinsic physical properties of garments while
being manipulated, see Fig. 1.

To investigate the continuous perception of deformable
objects, we have captured a dataset containing video se-
quences of RGB and depth images. We aim to predict the
physical properties (i.e. weights) and categories of garment
shapes from a video sequence. Therefore, we address the
state-of-the-art limitations by learning dynamic changes as
opposed to static representations of garments [6], [7]. We use
weight and shape as the experimental variables to support
our continuous perception hypothesis. We must note that
we do not address manipulation in this paper since we
aim to understand how to equip a robot best to perceive
deformable objects visually, as serves as a prerequisite for
accommodating online feedback corrections for garment
robotic manipulation. Our codes and datasets are available
at: https://github.com/cvas-ug/cp-dynamics

II. BACKGROUND

Minimising the difference between the simulated environ-
ment and the real environment to find physical properties has
been widely investigated. Bhat [4] proposed an approach to
learn physical properties of clothes from videos by minimis-
ing a squared distance error (SSD) between the angle maps
of folds and silhouettes of the simulated clothes and the real
clothes. However, their approach observes high variability
while predicting physical properties of clothes such as shear
damping, bend damping and linear drag. Li et al. [8], [9]
has proposed to integrate particles to simulate simple fabrics
and fluids in order to learn rigidness and moving trajectories
of a deformable object using a Visually Grounded Physics
Learner network (VGPL). By leveraging VGPL together
with an LSTM, the authors can predict the rigidness and
future shapes of the object. In their research, they are using
particles to learn the dynamic changes of objects. In contrast,
due to the high dimensionality and complexity of garments,
particles are an approximation to the dynamic changes which
cannot be fully described for a robot manipulation task.
In this paper, we leveraged video sequences and neural
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Fig. 1: Our network is divided into feature extraction (F), an LSTM unit and classifier networks. Depth images of a garment
with a resolution of 256×256 pixels are passed to the feature extraction network. Three feature latent spaces, i.e. Ct, Ct+1
and Ct + 2 from time-steps t, t + 1 and t + 2, respectively, are concatenated and then passed to the LSTM. Each feature
latent space has a tensor size of 15× 15 with a channel size of 256. From the LSTM, we obtain a predicted future feature
latent space (Ct + 3) which is reshaped back to the original feature space size (i.e. [1, 256, 15, 15]) and input to an average
pooling layer. The average pool output with size of [1, 256, 6, 6] is flattened to [1, 9216] and passed to the fully connected
(FC) shape and weight classifiers.

networks to approximate these dynamic interactions as a non-
linear dimensional mapping between frames.

To learn elasticity of objects, Senguapa et al. [10] has
proposed an approach where a robot presses the surface
of objects and observes the object’s shape changes in a
simulated and a real environment. They aimed to find the
difference of the simulated and real objects Young’s modules
to estimate the object’s elasticity and estimate forces applied
on the object without any force sensor. Tanake et al. [2]
minimised the shape difference between real and simulated
garments to find their stiffness. In these two approaches, if
there exists a small variation between simulation and reality
or if an unseen object is presented, their approaches require
to simulate novel object models again as the simulation is
limited to known object models.

Compared with previous research that has utilised tempo-
ral images to analyse the physical properties of deformable
objects, Davis et al. [11] chose to investigate deformable
objects’ physical properties in terms of their vibration fre-
quencies. That is, they employed a loudspeaker to generate
sonic waves on fabrics to obtain modes of vibration of fabrics
and analysed the characteristics of these modes of vibration
to identify the fabrics materials. The main limitation of
this approach is in the use of high-end sound and sensing
equipment which would make it impractical for a robotic
application. In this paper, we employ an off-the-shelf RGBD
camera to learn dynamic changes of garments.

Yang et al. [12] has proposed a CNN-LSTM architecture.
Their method consists of training a CNN-LSTM model to
learn the stretch stiffness and bend stiffness of different
materials and then apply the trained model to classify gar-
ment material types. However, suppose a garment consists
of multiple materials. In that case, the CNN-LSTM model
will not be able to predict its physical properties because
their work focuses on garments with only one fabric type.
Mariolis et al. [13] devised a hierarchical convolutional
neural network to conduct a similar experiment to predict
the categories of garments and estimate their poses with
real and simulated depth images. Their work has pushed the
accuracy of the classification from 79.3% to 89.38% with
respect to the state of the art. However, the main limitations
are that their dataset consists of 13 garments belonging to
three categories. In this paper, we address this limitation
by compiling a dataset of 20 garments belonging to five
categories of similar material types, and we have evaluated
our neural network to predict unseen garments.

Similar to this work, Martinez et al. [3] has proposed a
continuous perception approach to predict the categories of
garments by extracting Locality Constrained Group Sparse
representations (LGSR) from depth images of the garments.
However, the authors did not address the need to under-
stand how garments deform over time continuously as full
sequences need to be processed in order to get a prediction
of the garment shape. Continuous predictions is a prerequi-
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site for accommodating dexterous robotic manipulation and
online feedback corrections to advanced garment robotic
manipulation.

III. MATERIALS AND METHODS

We hypothesise that continuous perception allows a robot
to learn the physical properties of clothing items implicitly
(such as stiffness, bending, etc.) via a Deep Neural Network
(DNN) because a DNN can predict the dynamic changes
of an unseen clothing item above chance. For this, we im-
plemented an artificial neural network that classifies shapes
and weights of unseen garments (Fig. 1 and Section III-
B). Our network consists of a feature extraction network,
an LSTM unit and two classifiers for classifying the shape
and weight of garments. We input three consecutive frame
images (t, t+1, t+2) into our network to predict the shape
and weight of the observed garment from a predicted feature
latent space at t + 3. We propose to use the garment’s
weight as an indicator that the network has captured and can
interpret the physical properties of garments. Specifically,
the garment’s weight is a physical property and is directly
proportional to the forces applied to the garment’s fabric over
the influence of gravity.

A. Garment Dataset

To test our hypothesis, we have captured 200 videos of a
garment being grasped from the ground to a random point
above the ground around 50 cm and then dropped from this
point. Each garment has been grasped and dropped down
ten times in order to capture its intrinsic dynamic properties.
Videos were captured with an ASUS Xtion Pro, and each
video consists of 200 frames, resulting in 40K RGB and
40K depth images at a resolution of 480×680 pixels. Fig. 2
shows examples of RGB and depth images in our dataset.

Our dataset features 20 different garments of five garment
shape categories: pants, shirts, sweaters, towels and t-shirts.
Each shape category contains four unique garments. Gar-
ments are made of cotton except for sweaters which are made
of acrylic and nylon. To obtain segmentation masks, we use
a green background, and we used a green sweater to remove
the influence of our arm1. We then converted RGB images to
a HSV colour space and identified an optimal thresholding
value in the V component to segment the green background
and our arm from the garment. Fig. 3 shows an example of
the segmentation.

B. Network Architecture

Our ultimate objective is to learn the dynamic properties
of garments as they are being manipulated. For this, we
implemented a neural network comprising a feature extrac-
tion network, a recurrent neural network, and a shape and a
weight classifier networks. Fig. 1 depicts the overall neural
network architecture. We split training this architecture into
learning the appearance of the garment in terms of its shape

1The original plan was to use a bi-manual robot to capture this dataset.
However, due to COVID-19 restrictions, we compiled this dataset ourselves
[14]

first, then learning the garments dynamic properties from
visual features using a recurrent neural network (i.e. LSTM).

1) Feature extraction: A feature extraction network is
needed to describe the visual properties of garments (RGB
images) or to describe the topology of garments (depth
images). We therefore implemented 3 state of the art network
architectures, namely [15],VGG 16[16] and ResNet 18 [17].
In Section IV-C, we evaluate their potential for extraction
featues from garments.

2) Shape and weight classifiers: The classifier compo-
nents in AlexNet, Resnet and VGG-16 networks comprise
fully connected layers that are used to predict a class
depending on the visual task. In these layers, one fully
connected layer is followed by a rectifier and a regulariser,
i.e. a ReLu and dropout layers. However, in this paper, we
consider whether the dropout layer will benefit the ability of
the neural network to generalise the classification prediction
for garments. The reason is that the image dataset used to
train these networks contain more than 1000 categories and
millions of images [15], while our dataset is considerable
smaller (ref. Section III-A). The latter means that the dropout
layers may filter out useful features while using our dataset.
Dropout layers are useful when training large datasets to
avoid overfitting. Therefore, we have experimented with
modifying the fully connected networks by removing the
ReLu and dropout layers and observe their impact on the
shape and weight classification tasks. After experimenting
with four different network parameters, we found that the
best performing structure comprises three fully connected
layer blocks, each of which only contains a linear layer. The
number of features stays as 9216 without any reduction, then
the number reduces to 512 in the second layer, and finally, we
reduce to 5 for shape and 3, for weight as the outputs of the
classifications. We do not include these experiments in this
paper as they do not directly test the hypothesis of this paper
but instead demonstrates how to optimise the classification
networks for the shape and weight classifiers in this paper.

3) LSTM Rationale: The ability to learn dynamic changes
of garments is linked to perceiving the object continuously
and being able to predict future states. That is, if a robot
can predict future changes of garments, it will be able to
update a manipulation task on-the-fly by perceiving a batch
of consecutive images rather then receiving a single image
and acting sequentially. For this, we have adopted a Long
Short-Term Memory (LSTM) network to learn the dynamic
changes of consecutive images. After training (ref. Section
III-C), we examined the ability to learn garments’ dynamic
changes by inputting unseen garments images into the trained
LSTM and evaluate if the network (Fig. 1) can predict
shapes and weights classifications based on predicted visual
features.

C. Training Strategy

We split training our architecture (Fig. 1) into two parts.
First, we let the network learn the appearance or topology of
garments by means of the feature extraction and classification
networks (Sections III-B.1 and III-B.2). After this, we then
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Fig. 2: Our dataset features five different shapes of garments:(from left to right: shirts, T-shirts, pants, towels and sweaters),
of which RGB images (top) and depth images (bottom) are captured using an Xtion Pro camera

Fig. 3: Segmented RGB and depth image

train the LSTM network while freezing the parameters of
the feature extraction and classification networks to learn the
dynamic changes of garments.

We have used pre-trained architectures for AlexNet,
Resnet 18 and VGG 16 but fine-tuned its classifier com-
ponent. For depth images, we fine-tuned the input channel
size of the first convolutional layer from 3 to 1 (for AlexNet,
Resnet 18 and VGG 16). The loss function adopted is Cross-
Entropy between the predicted shape label and the target
shape label. After training the feature extraction networks,
we use these networks to extract features of consecutive
images and concatenate features for the LSTM. The LSTM
learning task is to predict the next feature description from
the input image sequence, and this predicted feature descrip-
tion is passed to the trained classifier to obtain a predicted
shape or weight label. The loss function for training the
LSTM consists of the mean square error between the target
feature vector and the predicted feature vector generated by
the LSTM, and the Cross-Entropy between the predicted
shape label and the target shape label. The loss function is:

Ltotal = LMSE + 1000× LCross−Entropy (1)

We have used a ’sum’ mean squared error during training,
but we have reported our results using the average value of
the mean squared error of each point in the feature space. We
must note that we multiply the cross-entropy loss by 1000
[2] to balance the influence of the mean squared error and
cross-entropy losses.

2We found that this value works well with our architecture and database.

IV. EXPERIMENTS

For a piece of garment, shape is not an indicator of the
garment’s physical properties but the garment’s weight as it is
linked to the material’s properties such as stiffness, damping,
to name a few. However, obtaining ground truth for stiffness,
damping, etc. requires the use of specialised equipment and
the goal of this paper is to learn these physical properties
implicitly. That is, we propose to use the garment’s weight
as a performance measure to validate our approach using
unseen samples of garments.

To test our hypothesis, we have adopted a leave-one-out
cross-validation approach. That is, in our dataset, there are
five shapes of garments: pants, shirts, sweaters, towels and t-
shirts; and for each type, there are four garments (e.g. shirt-1,
shirt-2, shirt-3 and shirt-4). Three of the four garments (shirt-
1, shirt-2 and shirt-3) are used to train the neural network,
and the other (shirt-4) is used to test the neural work (unseen
samples). We must note that each garment has different
appearance such as different colour, dimensions, weights and
volumes. For weight classification, we divided our garments
into three categories: light (the garments weighed less than
180g), medium (the garments weighed between 180g and
300g) and heavy (the garments weighted more than 300g).

We have used a Thinkpad Carbon 6th Generation (CPU:
Intel i7-8550U) equipped with an Nvidia GTX 970, running
Ubuntu 18.04. We used SGD as the optimiser for training the
feature extraction and classification networks, with a learning
rate of 1× 10−3 and a momentum of 0.9 for 35 epochs. We
then used Adam for training the LSTM with a learning rate of
1× 10−4 and a step learning scheduler with a step size of 15
and decay rate of 0.1 for 35 epochs. The reason for adopting
different optimisers is that Adam provides a better training
result than SGD for training the LSTM, while SGD observes
faster training for the feature extraction and classifiers.

To test our hypothesis, we first experiment on which image
representation (RGB or depth images) is the best to capture
intrinsic dynamic properties of garments. We also examined
three different feature extraction networks to find the best
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TABLE I: Classification accuracy (in percentages) of unseen
garment shapes where P is pants; SH, shirt; SW, sweater;
TW, towel; and TS, t-shirt.

Feature Extractor P SH SW TW TS Average
AlexNet(depth) 57.0 13.0 71.0 47.0 50.0 47.6
AlexNet(RGB) 18.0 13.0 0.0 0.0 0.0 6.2
VGG16(depth) 25.0 18.0 35.0 20.0 25.0 24.6
VGG16(RGB) 9.0 14.0 20.0 7.0 11.0 12.2

ResNet18(depth) 6.0 10.0 51.0 69.0 5.0 28.2
ResNet18(RGB) 16.0 1.0 2.0 81.0 14.0 22.8

TABLE II: Classification accuracy of unseen garment
weights.

Feature Extractor Light Medium Heavy Average
AlexNet (depth) 72.0 18.0 55.0 48.3
AlexNet (RGB) 82.0 14.0 7.0 34.3
VGG16 (depth) 40.0 48.0 31.0 39.7
VGG16 (RGB) 38.0 3.0 100.0 47

ResNet18 (depth) 51.0 6.0 47.0 34.7
ResNet18 (RGB) 41.0 5.0 10.0 18.7

performing network for the visual task of classifying shapes
and weights of garments (Section IV-A). After that, we
compare the sequence image size for the LSTM (Section
IV-B), and finally, evaluate the performance of our network
on a continuous perception task (Section IV-C).

A. Feature Extraction Ablation Experiments

We have tested using three different deep convolutional
feature extraction architectures: AlexNet, VGG 16 and
ResNet 18. We compared the performance of shape and
weight classification of unseen garments with RGB and depth
images. These feature extractors have been coupled with
a classifier without an LSTM; effectively producing single
frame predictions similar to [18].

From Table I, it can be seen that ResNet 18 and VGG
16 overfitted the training dataset. As a consequence, their
classification performance is below or close to a random
prediction, i.e. we have 5 and 3 classes for shape and weight.
AlexNet, however, observes a classification performance
above chance for depth images. By comparing classification
performances between RGB and depth images in Table I,
we observe that depth images (47.6%) outperformed the
accuracy of a network trained on RGB images (7.4%) while
using AlexNet. The reason is that a depth image is a map
that reflects the distances between each pixel and the camera,
which can capture the topology of the garment. The latter is
similar to the findings in [18], [3].

We observe a similar performance while classifying gar-
ments’ weights. AlexNet has a classification performance
of 48.3% while using depth images. We must note that
the weights of garments that are labelled as ’medium’
are mistakenly classified as ’heavy’ or ’light’. Therefore
compared to the predictions on shape, predicting weights
is more difficult for our neural network on a single shot
perception paradigm. From these experiments, we, therefore,
choose AlexNet as the feature extraction network for the
remainder of the following experiments.

TABLE III: MSEs (average and standard deviation) between
unseen target features and predicted features

Window sequence size Mean MSE Std. Dev. MSE
2 (depth) 0.094 0.031
3 (depth) 0.084 0.030
4 (depth) 0.089 0.030
5 (depth) 0.085 0.030

TABLE IV: Classification accuracy (in percentages) of un-
seen garment shapes where P is pants; SH, shirt; SW,
sweater; TW, towel; and TS, t-shirt.

Window Size P SH SW TW TS Average
2 (depth) 43.0 21.0 62.0 57.0 50.0 46.6
3 (depth) 39.0 23.0 66.0 54.0 62.0 48.8
4 (depth) 44.0 21.0 0.62 56.0 52.0 47.0
5 (depth) 47.0 21.0 62.0 57.0 51.0 47.6

B. Ablation Study: LSTM sequence size

For this experiment, we have considered window sequence
sizes from 2 to 5 consecutive frames. We compared the
prediction results and also the Mean Squared Errors (MSE)
of the latent space from target images and the predicted latent
space output from the LSTM. Table IV shows the results.

As observed in Table III, the network architecture with a
window sequence size of 3 has the lowest MSE. From Table
IV, it can be seen that the neural network with a window
sequence size of 3 has a higher prediction accuracy (48.8%)
while comparing with others. However, the window sequence
size has little effect in classification, and reconstruction
performance as the difference in the MSE and classification
averages are not statistically significant. For this paper, we,
therefore, choose a window size of 3 consecutive frames.

C. Continuous Perception Experiment

To test our continuous perception hypothesis (Section III),
we have chosen AlexNet and a window sequence size of 3
to predict the shape and weight of unseen video sequences
from our dataset, i.e. video sequences that have not been
used for training. For this, we accumulate prediction results
over the video sequence and compute the Moving Average
(MA) over the evaluated sequence. That is, MA serves as the
decision-making mechanism that determines the shape and
weight classes after observing a garment deform over time
rather than the previous three frames as in previous sections.

This experiment consists of passing three consecutive
frames to the network to output a shape and weight class
probability for each output in the networks. We then compute
their MA values for each output before sliding into the
next three consecutive frames, e.g. slide from frame t − 2,
t − 1, t to frame t − 1, t, t + 1. After we slide across the
video sequence and accumulate MA values, we calculated
an average of the MA values for each class. We chose the
class that observes the maximum MA value as a prediction
of the target category. Our unseen test set contains 50 video
sequences. Hence we got 50 shape and weight predictions
which have been used to calculate the confusion matrices in
Fig. 4 and Fig. 5.
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Fig. 4: Continuous shape prediction (Left: Moving Average
Confusion Matrix; Right: Moving Average over a video
sequence)

From Fig. 4(left) and Fig. 5(left), it can been seen that an
average prediction accuracy of 48% for shapes and an aver-
age prediction of 60% for weights have been obtained for all
unseen video sequences. We can observe in Fig. 4(left) that
the shirt has been wrongly classified as a pant in all its video
sequences, but the sweater is labelled correctly in most of its
sequences. Half of the towels have been wrongly recognised
as a t-shirt. Also for weight, the medium-weighted garments
are wrongly classified in all their sequences, where most
of them have been categorised as heavy garments, but all
heavy garments are correctly classified. Fig. 4 (right) shows
an example of the MA over a video sequence of a shirt. It
can be seen that the network changes its prediction between
being a t-shirt or a pant while the correct class is a shirt.
The reason for this is that the shirts, t-shirts and pants in
our dataset are made of cotton. Therefore, these garments
have similar physical properties, but different shapes and our
neural network is not capable of differentiating between these
unseen garments, which suggests that further manipulations
are required to improve the classification prediction. Fig. 5
(right) has suggested that the network holds a prediction
as ’heavy’ over a medium-weight garment. This is because
heavy garments are sweaters and differ from the rest of the
garments in terms of its materials. Therefore, our network
can classify heavy garments but has a low-performance
accuracy for shirts and pants.

As opposed to shapes, weights are a more implicit physical
property which are more difficult to be generalised. Never-
theless, the overall performance of the network (48% for
shapes and 60% for weights) suggests that our continuous
perception hypothesis holds for garments with shapes such
as pants, sweaters, towels, and t-shirts and with weights such
as light and heavy, suggesting that further interactions with
garments such as in [19], [20] are required to improve the
overall classification performance. We must note that the
overall shape classification performance while validating our
network is approximately 90%; suggesting that the network
can successfully predict known garment’s shapes based on
its dynamic properties.

Fig. 5: Continuous weight prediction (Left: Moving Average
Confusion Matrix; Right: Moving Average over a video
sequence)

V. CONCLUSIONS

From the ablation studies we have conducted, depth im-
ages have a better performance over RGB images because
depth captures the garment topology properties of garments.
That is, our network was able to learn dynamic changes
of the garments and make predictions on unseen garments
since depth images have a prediction accuracy of 48%
and 60% while classifying shapes and weights, accordingly.
We also show that continuous perception improves classi-
fication accuracy. That is, weight classification, which is
an indicator of garment physical properties, observes an
increase in accuracy from 48.3% to 60% under a continous
perception paradigm. This means that our network can learn
physical properties from continuous perception. However,
we observed an increase of around 1% (from 47.6% to
48%) while continuously classifying garment’s shape. The
marginal improvement while continuously classifying shape
indicates that further manipulations, such as flattening [21]
and unfolding [22] are required to bring a unknown garment
to a state that can be recognised by a robot. That is, the
ability to predict dynamic information of a piece of an
unknown garment (or other deformable objects) facilitates
robots’ efficiency to manipulate it by ensuring how the
garment will deform [6], [7]. Therefore, an understanding
of the dynamics of garments and other deformable objects
can allow robots to accomplish grasping and manipulation
tasks with higher dexterity

From the results, we can also observe that there exist incor-
rect classifications of unseen shirts because of their similarity
in their materials. Therefore, we propose to experiment on
how to improve prediction accuracy on garments with similar
materials and structures by allowing a robot to interact with
garments as proposed in [20]. We also envisage that it can be
possible to learn the dynamic physical properties (stiffness)
of real garments from training a ’physical-similarity network’
(PhyNet) [5] on simulated garment models.
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S. M. Seitz, “Estimating cloth simulation parameters from video,” in
Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium
on Computer animation. Eurographics Association, 2003, pp. 37–51.

[5] T. F. Runia, K. Gavrilyuk, C. G. Snoek, and A. W. Smeulders,
“Cloth in the wind: A case study of physical measurement through
simulation,” arXiv preprint arXiv:2003.05065, 2020.
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