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Abstract— Disparity estimation is the core task of stereo
vision, which is widely used for many applications such as
robot navigation, autonomous driving and 3D object detection.
In recent years, there have been many methods to estimate
disparity by convolution neural networks (CNN), and these
approaches generally handle the whole image with the same
network structure and weights. As a result, the areas which
are hard to match such as occluded regions are often ignored.
However, the hard matching regions may contain some useful
information in a scene. To overcome such an issue, we propose
a novel confidence based branch fusion network (ConfBFNet),
an architecture with two branch sub-networks that consist of
an hourglass module and an aggregation module with a wide
perception field, to deal with areas with different matching
difficulties. These two branches are flexible and we choose them
in accordance with the features of different values of confidence.
Besides, in order to enable the branches to focus on different
areas, we propose a confidence-based fusion mechanism for
those branches. Comprehensive experiments on some typical
benchmark datasets show that our proposed work can much
improve the performance of disparity estimation.

I. INTRODUCTION

Stereo vision generally aims to estimate the matching pairs
from two rectified images, which is also called disparity
estimation. It has been widely used in different fields such as
robot navigation, 3D target detection and autonomous driv-
ing. Disparity estimation was studied many years ago. [1] has
summarized many different methods and divided the dispar-
ity matching task into four steps: matching cost computation,
matching cost aggregation, disparity optimization and dis-
parity refinement. In matching cost computation, similarity
measures of the left patch and right patches in different can-
didate disparities, such as sum of absolute difference(SAD),
normalized cross-correlation(NCC) and Hamming distance
of the result of census transform, are computed. The aim of
the matching cost aggregation is utilizing the information of
context from the image. Then the disparity is optimized and
refined to minimize the total matching cost.

With the rising of deep learning in the last decade, a lot of
network-based disparity estimation methods have emerged.
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At first, the neural network is a feature extractor for matching
cost computation and the following steps are the same as
traditional solutions [1] [2]. Recently, there have appeared
many end-to-end disparity estimation solutions, which can be
summarized into four steps: feature extraction, the building
of cost volume, cost aggregation and disparity regression.
DispNetC [7] builds the cost volume with the similarity from
correlation operation. While GC-Net [10] and PSMNet [11]
build a 3D cost volume and aggregate it with 3D convolution
networks.

However, most previous works treat the entire image with
the same network structure. As a result, hard areas in the
image pairs such as occlusion are not handled with special
care, leading to possible estimation performance degradation.
To solve this problem, we design two branch networks that
attend to easy area and hard area in an image. Among them,
the branch network for easy region consists of an hourglass
module while the other one is an aggregation module with a
wide perception field. Moreover, we introduce a confidence-
based fusion method, where the confidence is calculated from
a confidence network and used as the weights for final fu-
sion. Extensive experiments on ScenceFlow, KITTI datasets
demonstate the promising performance of the proposed novel
disparity estimation method.

Our contributions can be summarized as follows.
(1)We propose a novel branch network structure that focus

on hard regions and easy regions in an image by different
branches, enabling a more useful whole disparity estimation.

(2)We suggest a confidence-based fusion mechanism,
where the outputs for hard area and easy area are fused
effectively by the weights produced by a confidence network.

II. RELATED WORKS

In traditional approaches, matching cost is a key measure
for disparity estimation. So traditional disparity solutions can
be classified based on the range of matching cost computa-
tion. In global methods, an energy function is defined as
the optimization target of the whole image and the task can
be treated as a graph-cut model [28] or a Markov Random
Field model [29]. While for local methods, features from
the information of current pixels, such as image patches, are
matched with various criteria. Hirschmüller has proposed a
semi-global method [3], where the target of optimization is
an aggregated cost from different directions.

As the development of deep learning, many methods
which are based on deep learning have been proposed.
Zbontar and LeCun [2] utilized a deep Siamese network for
disparity estimation by training a feature extractor such that
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Fig. 1. The structure of our network. Our network consists of three parts: Baseline network, Confidence Network and Fusion Module. disp0, disp1 and
disp2 are intermediate disparity results and disp2 is used to construct the ground truth confidence. conf is the estimated confidence map for disp2 and
also used as the weight of fusion operation. The disp3 is the final disparity map from the fused cost volume.

the features of matching pairs are also similar. For calculating
matching cost, the network predicts the similarity of feature
patches. After that, their method utilizes traditional disparity
methods such as cost aggregation from SGM [3]. Luo [4] et
al. proposed a faster Siamese solution, which treats disparity
matching as a multi-label classification problem. In their
method, the network is accelerated by predicting similarity
from inner dot calculation. Besides, there are many other
related methods, in which deep networks are used for other
steps in traditional disparity pipeline. For example, SGM-Net
[5] learns penalty parameters for cost aggregation in SGM
[3].

Later, many end-to-end disparity stereo networks emerged.
Among such related methods, DispNet-C [7] based on
FlowNet [6] is one typical method by constructing a cost vol-
ume from the concatenation of similarity of stereo features
in different disparities. Then, they put the cost volume into
convolution layers to get the final disparity. CRL [8] splits
DispNet-C [7] into two steps. The first step is a baseline
full-size DispNet. In the second step, they take a warping of
left feature based on the raw disparity. iResNet [9] combined
disparity computation and disparity refinement after a new
feature construction loss. A new way of constructing cost
volume is suggested in GC-Net [10]. Instead of similarity,
[10] concatenates left feature and right feature from different
disparities and forms a 4D cost volume in the shape of
disparities× channels× height×width. After that a 3D
convolution operation is implemented on the cost volume,
which outputs a cost volume in the shape of disparities×
1 × height × width. PSMNet [11] designs a new structure
by adding a Spatial Pyramid Pooling layer, which enlarges
the reception field of the network. In addition, multiple 3D
encoder-decoder modules are deployed for refining disparity
result. GWC-Net [12] focuses on building the cost volume
by combining the concatenation and correlation.

In recent years, a wide variety of different approaches

utilizing the idea of cost aggregation or special network
structure have been presented. For example, ECA [13] aggre-
gates the cost volume using three 3D convolution layers in
different shapes as well as learning an aggregation guidance.
Inspired by SGM [3], GA-Net [14] suggests a semi-global
aggregation layer and a locally guidance aggregation layer.
AANet [15] splits cost aggregation into two steps: Intra-Scale
Aggregation and Cross-Scale Aggregation, introducing de-
formable convolution to deal with large low-texture regions.

III. PROPOSED METHOD

A. Network Architecture

Our proposed network structure is shown in Fig. 1, which
has three parts, baseline network, confidence network, and
fusion module. To enable the network to adaptively focus on
areas of an image with different confidence, we propose a
fusion module at the end of the whole structure, where one
branch focuses on easy area and the other focuses on hard
area.

The baseline network can be divided into three steps,
feature extraction, cost volume construction and 3D convo-
lution cost aggregation. In feature extraction, there are some
residual sub-networks and the results are concatenated to a
320-channel feature. After that, the initial cost volume is
constructed by group-wise correlation method [12], which
is the concatenation of the concatenated volume and the
correlation volume. Then the volume is input into a residual
3D CNN and some 3D hourglass networks.

After the outputs of the second hourglass, we choose the
maximum k of each pixel in matching probability volume
before softmax operation, called top-k pooling operation
which is from [22]. The top-k matching probability volume is
sent to a confidence sub-network together with the feature of
the left image. The confidence network is also similar to [22]
and its structure can be shown as Fig. 2. We put the top-k
matching probability volume into several convolution layers.
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Meanwhile, we extract the features in different perception
fields from left feature map by implementing convolution
layers of different kernel sizes. Then we concatenate them
and conduct a fusion convolution operation. Different from
[22], our confidence network does not need any information
from the disparity map.

In addition, the output cost volume from the second
hourglass is also sent to two different sub-networks and
processed by convolution kernels with different weights.
Then the two outputs are added by the weights according
to the output of the confidence network, and the last parts
of the whole network are another two convolution layers.

B. Disparity Confidence

The output of our confidence network is disparity con-
fidence, and it is a measure describing the reliability of
disparity map. Relying on its definition, the physical meaning
of disparity confidence is not unique and many works have
been proposed concerning this issue. Here are some frequent
categories. The first category is disparity ambiguity, describ-
ing the relationship between the matching cost in the best
disparity and those in other candidate disparities. Such as
Peak Ratio(PKR) [16], Winner Margin(WM) [17], perturba-
tion(PER) [18] and Attainable maximum likelihood(AML)
[30]. The second one is disparity consistency, which en-
courages the bidirectional best-matching pairs and often
used in unsupervised depth estimation [19]. The third one
is disparity smoothness assuming the local smoothness in
disparity maps, followed by another type that image texture
describing the difficulty of matching. The last typical one is
disparity error label, where confidence estimating is treated
as a two-label classification task telling whether the error is
less than threshold or not.

Disparity confidence is often used to modulate the cost
volume. For example, in [23], disparity confidence is the
weight of the current hypothesis disparity in filter kernel. The
higher the confidence is, the more part of the cost is kept after
modulation. Even in deep networks, disparity confidence can
also be used for cost modulation. For example, [24] raised a

confidence measure from the convolution of the entropy of
matching probability and used it as the weight of CSPN [25]
refinement network. While in many deep networks, disparity
confidence is often treated as an output result and trained
from image feature, disparity and cost volume [20] [21] [22].

In our work, we will take the disparity confidence that
is predicted from the intermediate disparity map (disp2)
as weights for two network branches. In many previous
methods, confidence from ambiguity is widely used because
it can be calculated directly from traditional matching cost
volume. However, it is hard to tell the physical meaning
of the cost volume from deep network. For example, we
can imagine a scene where the matching probabilities of
dispgt, dispgt − 1 and dispdt + 1 are the same and the
probabilities of other candidates are set to 0. Then there are
other candidate disparities whose probabilities are close to
the best probability, which causes high ambiguity. However,
the disparity error is low and the current pixel can be seen
as easy area in this case. Besides, downsampling and upsam-
pling operations are usually used in deep learning methods,
which leads to more ambiguity. Therefore, the ambiguity
in matching probability does not describe the difficulty of
disparity matching. To depict the difficulty effectively, we
choose to use the error of disparity.

conf = e−
|d−dgt|

2σ2 (1)

where d is the estimated disparity value of disp2 in Fig.1,
dgt is the ground truth disparity value, σ is the parameter
which controls the level. The σ is set to 0.85 for Scene Flow
dataset, it means that if the error is larger than 1 pixel, the
confidence is less than 0.5.

Fig. 3 shows the difference between traditional ambiguity-
based confidence measure and our proposed confidence mea-
sure. We can find that ambiguity (Fig.3(b)) from network-
based matching cost does not match the distribution of
disparity error (Fig.3(d)). For example, the texture in back-
ground regions of Fig. 3(a) is sufficient for disparity estima-
tion and the error is low, which means the confidence from

Fig. 2. The structure of our confidence sub-network.
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(a) (b) (c) (d)

Fig. 3. The difference between traditional confidence and our proposed confidence. (a) Input image. (b) Attainable maximum likelihood (AML) [30],
which is a confidence measure based on ambiguity. (Yellow area means high confidence.) (c) Our proposed confidence with σ is 0.5 (Yellow area means
high confidence.) (d) Error map (The meaning of colors is painted at the top-left of the map, with dark blue meaning low error and dark red meaning high
error)

error is high. But the confidence describing ambiguity from
network-based matching probability is low due to the low
disparity value.

C. Fusion Module

Many previous works handle the cost volume by using the
convolution layers with the same kernel weights. As a result,
the network lacks the discrimination for different regions in
an image. To raise the performance by paying more attention
to difficult areas, we propose two sub-networks dealing with
easy area and hard area parallelly and fusing them together.

Specifically, we introduce different network structures
for different branches. For easy area, the current network
structure is good enough, so we continue using the previous
hourglass network. While for hard area, we want to fully
utilize the information in easy regions to supplement the hard
regions. We prefer structures with larger perception fields be-
cause larger perception fields can include more information
from high confident regions. After two branches, the two cost
volumes are added together using the confidence as weights.
The weight of branch for easy area is confidence map that
are produced by the confidence network module. The weight
of branch for hard area is one minus confidence. With
such a design, in the area where the estimated confidence
is high, most part of the fused cost volume is from the
result of branch for easy area and vice versa. Moreover,
this mechanism guides the training of the network, so the
branches can discriminate areas with different confidence.
After that, the added cost volume is sent to two convolution
layers and the final cost volume is the output.

D. Loss Function for the Whole Network

Our loss function has three parts, that is, disparity loss,
branch loss and confidence loss. The total loss is given by,

loss = lossdisp + λbranchlossbranch + λconf lossconf (2)

where lossdisp represents the weighted sum of L1 losses for
the output disparity maps, lossbranch stands for the weighted
L1 losses of disparity maps in branch for easy area and
branch for hard area, lossconf means the confidence loss,
which is a BCE loss with the ground truth constructed as
Eq. (1). lossdisp and lossbranch is defined as follows,

lossdisp =

3∑
i=0

wi ∗
∑
|di − dgt| (3)

lossbranch = losshigh + losslow

=
∑

(b+ c) ∗ |dhigh − dgt| +∑
(b+ 1− c) ∗ |dlow − dgt|

(4)

where di and dgt stands for the estimated disparity map dispi
and the ground truth disparity map respectively. The values
of wi mean the weights of disp0, disp1, disp2 and disp3.
We set wi increasingly because the target of optimization is
disp3 and disp0 to disp2 are just used to assist the training
of the previous part of the network. dhigh and dlow stands for
the disparity maps from branch for easy area and branch for
hard area respectively. In order to train the branches to attend
to different parts of the image, we introduce a weighted L1
loss for branches, where the high-confidence part’s weight
is b + c while the low-confidence part’s is b + 1 − c. b is
the base weight and is set to 1.0, while c is the ground truth
confidence. The term b is designed to protect the baseline
network from fitting more to previous disparity outputs when
the estimated confidence is too small.

IV. EXPERIMENTS

A. Datasets and Implement Details

We use Scene Flow [7] dataset and KITTI [26] [27] dataset
to evaluate the performance of our work. Scene Flow [7] is
a synthetic stereo dataset with dense disparity ground truth.
Containing three scenes that are Flyingthings3D, Driving,
and Monkaa, the dataset has 35454 images for training and
4370 images for testing. All the images have the size of
960×540. The metric of Scene Flow dataset is the mean
average disparity error in pixels called end-point error (EPE).
KITTI datasets are used for autonomous driving and have
two versions, KITTI 2012 and KITTI 2015. Both of them
provide sparse ground truth disparities from LiDAR. For
KITTI 2015 dataset, the percentage of outliers called D1
is used as the evaluating metric. The definition of D1 is
whether the disparity error is larger than 3 pixels and 0.05dgt,
where dgt is the ground truth disparity value. If it is larger
than these thresholds, it is defined as an outlier. In addition
to EPE and D1, there are three more measures in our
experiments: Th1, Th2 and Th3, describing the percentage
of outliers where the disparity error is larger than 1 pixel, 2
pixels and 3 pixels correspondingly. For KITTI 2012 dataset,
Th2, Th3, Th4, Th5 and average error are used for valuation,
where Th4 and Th5 have similar meaning as Th2 and Th3
mentioned above.
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We implemented our network with PyTorch using Adam
optimizer with β1 = 0.9 and β2 = 0.999. Two Nvidia Titan
RTX GPUs are used for training. We set the training batch
size as 8 and testing batch size as 4. For the evaluation on
Scene Flow dataset, we skip images whose valid pixels are
less than 10 percent of all pixels. Following the settings of
GWC-Net, wi in Eq.(3) are 0.5, 0.5, 0.7, 1.0 correspond-
ingly.

For Scene Flow dataset, to avoid the effect of confidence
error, we divide the training procedure into two steps. In
the first step, we only train baseline network and confidence
network, and we train these networks for 16 epoches with the
learning rate set to 0.001 and downscaled by 2 after epoch
10, 12, 14. Conversely, we only update the fusion module in
the second step, where we train it for 10 epoches with the
learning rate set to 0.001 and downscaled by 2 after epoch
5, 7, 9. The maximum disparity is set to 192. For KITTI
datasets, the model pre-trained from Scene Flow dataset is
fine-tuned entirely for 300 epoches, where the initial learning
rate is 0.001 and downscaled by 10 after 200 epoches.

B. Ablation Studies

To show the effects of the designed module in our pro-
posed network, several experiments with different settings
are conducted. As a comparison, we use 0.5 instead of
confidence in branch fusion (noted as pure weight). Besides,
another version of network is implemented, where no con-
fidence map is used or computed (noted as no conf), and
the branch sub-networks are replaced by a plain hourglass
network with the same training configuration as GWC-Net.
As shown in Table 1, the performance is improved as the
branch networks and weighted loss are incorporated. From

TABLE I
ABLATION STUDY OF NETWORK STRUCTURE ON SCENE FLOW DATASET

D1 EPE Th1 Th2 Th3

GWC-Net [12] - 0.765 0.0803 0.0447 0.033
No conf 0.02591 0.7098 0.07334 0.04214 0.03138
Pure weight 0.0249 0.6551 0.06649 0.04008 0.03033
Proposed 0.02476 0.6507 0.0661 0.03976 0.03011

Table 1 we can find that our branch network structure can
boost the performance and using estimated confidence can
further improve the results. The full settings of different
modules in the proposed network structure achieve the best
D1, EPE, Th1, Th2 and Th3 performance. Since σ is set
as 0.85, the confidence of 0.5 corresponds to 1 pixel error
approximately, and Th1 will decrease .

We further illustrate some qualitative comparison results
on Scene Flow dataset in Fig. 4. As demonstrated in Fig. 4,
especially for the highlighted boxes of hard regions shown
on the left of each image, we can clearly notice that the
disparity estimation of the proposed scheme is much better
that the scheme of no-conf network and GWC-Net.

The weights of branch loss and confidence loss, λbranch
and λconf , can also affect the performance of our network.
For Scene Flow dataset, λbranch is set to 1 and λconf is
set to 3. We have another series of experiments finetuning
on KITTI dataset from the best model pre-trained on Scene

Fig. 4. The qualitative comparison results on Scene Flow dataset. To show
the details of disparity estimation, three box regions that are from the images
with different color are enlarged and shown on the left of each image.

Flow dataset to find the best configuration of weights for our
losses. The results are shown in Table 3 and Table 4, from
which we can find that the best loss weight configurations of
KITTI 2015 and KITTI 2012 are different. For KITTI 2015
validation set, its best loss weight configuration is λconf = 5
and σ = 0.6 , while for KITTI 2015 validation set, it is
λconf = 3 and σ = 0.85.

C. Results on KITTI Dataset

For KITTI datasets, we finetune the network from the
best model pre-trained on Scene Flow dataset, and then we
submit the final results to the evaluation server. Table 2
and Table 5 show the evaluations of KITTI dataset. From
the results we can find that our proposed method can boost
the performance over background regions, which have more
hard areas. For KITTI 2012 test set illustrated in Table 2,
our percentage of Th2 for all pixels is 2.65%, and for non-
occlusion pixels is 2.05%, which outperforms some typical
methods. Our percentage of Th3 for all pixels is 1.73%, and
for non-occlusion pixels is 1.31%. While the results of Th4
and Th5 need to improve due to that the hyperparameters of
our network configuration may not be optimal and may need
further finetune. For KITTI 2015 test set shown in Table 5,
the D1 of background area for all pixels is 1.68%, and for
non-occlusion pixels is 1.54%. For the whole image area,
the D1 for all pixels is 2.05% and for non-occlusion pixels
is 1.86%.

Some representative results of KITTI datasets are shown
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Fig. 5. The qualitative results on KITTI 2015 dataset. From left to right are: (a) Input image (b) GWC-Net (c) Bi3D (d) our method. Two small boxes
are placed in each algorithm’s result and zoomed in to show the detailed effects for clear comparison. (Darker blue color means lower error.)

Fig. 6. The qualitative results on KITTI 2012 dataset. From left to right are: (a) Input image (b) AANet (c) GWC-Net (d) our method. Two small boxes
are placed in each algorithm’s result and zoomed in to show the detailed effects for clear comparison. (Brighter area in error map means larger error.)

TABLE II
RESULTS ON KITTI12 TEST SET

Method Th2(%) Th3(%) Th4(%) Th5(%) Avg-Noc Avg-AllOut-Noc Out-All Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All

PSMNet [11] 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 0.5 px 0.6 px
GwcNet-gc [12] 2.16 2.71 1.32 1.70 0.99 1.27 0.80 1.03 0.5 px 0.5 px
AANet+ [15] 2.30 2.96 1.55 2.04 1.20 1.58 0.98 1.30 0.4 px 0.5 px

our proposed 2.05 2.65 1.31 1.73 0.99 1.30 0.81 1.06 0.4 px 0.5 px

in Fig. 5 (KITTI2015) and Fig. 6 (KITTI2012). We have
chosen some areas which are hard to estimate the disparity,
such as occlusion areas and dark areas to demonstrate the
effects of the proposed new scheme. It can be found that our
method is more capable of dealing with hard areas, especially
the occlusion areas. Besides, the easy areas are not affected
in our method thanks to the branch for easy areas.

TABLE III
RESULTS FROM DIFFERENT TRAINING LOSS WEIGHT ON KITTI 2015

VALIDATION SET

λconf σ D1 EPE Th1 Th2 Th3

3 0.6 0.0139 0.5752 0.1254 0.0333 0.01547
3 0.85 0.01414 0.5787 0.1258 0.03368 0.01573
3 1.5 0.01388 0.5796 0.1274 0.03358 0.01496
5 0.6 0.01363 0.5721 0.1215 0.03287 0.01509
5 0.85 0.01389 0.5742 0.1255 0.03219 0.01537
5 1.5 0.01456 0.5858 0.1276 0.0351 0.0163

10 0.85 0.0142 0.5727 0.1252 0.0332 0.01539

V. CONCLUSIONS

To pay more attention to the areas which are difficult
to match, we proposed a Confidence based Fusion Net-
work(ConfBFNet) that includes two branch sub-networks.
One branch network focuses on the easy area while the other
concentrates on the hard area. Then the final disparity comes
from the weighted sum of the two outputs, where the weight
is from the result of our confidence estimation network. We
showed that the ConfBFNet can improve the performance by
fusing the results from both branches. Extensive experiments

TABLE IV
RESULTS FROM DIFFERENT TRAINING LOSS WEIGHT ON KITTI 2012

VALIDATION SET

λconf σ D1 EPE Th1 Th2 Th3

3 0.6 0.02306 0.672 0.1096 0.04638 0.02771
3 0.85 0.02161 0.6407 0.1081 0.04324 0.02521
3 1.5 0.02315 0.6666 0.1089 0.04534 0.02733
5 0.6 0.02291 0.6514 0.1089 0.04574 0.02729
5 0.85 0.02238 0.6596 0.1102 0.04494 0.0263
5 1.5 0.02261 0.671 0.1105 0.04557 0.02714

10 0.85 0.02253 0.6737 0.1134 0.04722 0.02725

TABLE V
RESULTS ON KITTI15 TEST SET

Method All(%) Noc(%)
D1-bg D1-fg D1-all D1-bg D1-fg D1-all

PSMNet [11] 1.86 4.62 2.32 1.71 4.31 2.14
GwcNet-g [12] 1.74 3.93 2.11 1.61 3.49 1.92
DeepPruner [31] 1.87 3.56 2.15 1.71 3.18 1.95
SENSE [32] 2.07 3.01 2.22 1.91 2.76 2.05
MCV-MFC [33] 1.95 3.84 2.27 1.80 3.40 2.07
Bi3D [34] 1.95 3.48 2.21 1.79 3.11 2.01

our proposed 1.68 3.88 2.05 1.54 3.47 1.86

are implemented to demonstrate the effectiveness of our
work on Scene Flow dataset and KITTI dataset. We notice
that our branch sub-networks are flexible in our proposed
architecture. Therefore, some future works can be extended
along the current direction. For example, we may further
divide the hard areas by their physical meanings to improve
the estimation.
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