Ran Cheng

An Intelligent Robotics Researcher

McGill University, Computer Science

Master of Science in Computer Science

Relevant Coursework: Intelligent Robotics, Reinforcement Learning, Applied Machine Learning, Computer Vision

Coursera

Certifications

Completed Courses: Neural Network for Machine Learning (UToronto), Robotics: Specialization (UPenn), Machine Learning (Stanford) Tongji University, School of Software Engineering Shanghai, China Aug 2011 - Aug 2015

Bachelor of Engineer, Software Engineering; GPA: 3.89/4.0

Honors and Awards: Outstanding Diploma thesis, National Aspiration Fellowship, Second Class Prize Fellowship, Social Activism Award, IBM Outstanding Contribution Award, Microsoft Imagine Cup, FTC (First Tech Challenge, a Robot Competition Conference) Technician

EXPERIENCE

Midea

Senior Staff Research Engineer (Team Lead), Supervisor: Tao Sun

- Neural Recon-Render: Use sparse convlution to reconstruct 3D scene given a sequence of RGBD data and use Neural Radical Field to refine and render the high quality 3D scene.
- Graph based life-long global loop closing for visual SLAM: Apply Visual Transformer and Sparse Convolution to embed the scene and replace Bag-of-Word fashion of re-localization in global loop closing.
- Very large-scale real-time indoor 3D object detection Dataset: Label very large-scale sequential indoor 3D object dataset with RGBD data. Dataset will be open to the research community.

Inceptio

Senior Software Engineer, Supervisor: Ruigang Yang

- 3D Object Detection: Improved LiDAR based 3D object detection method CenterPoint by introducing hough voting layer for center regression.
- Lidar-based Freespace Detection: Convert the segmentation task of freespace detection into center point prediction to use the shared encoder of object detection, the two methods run in real-time.

Huawei Noah's Ark Research Lab

Research Engineer, Supervisor: Bingbing Liu

- Pointcloud Semantic Segmentation: Our Sparse Semantic Segmentation Network now ranked 1st on both Semantic-KITTI benchmark (single scan challenge, named as AF2S3Net, note that 5th Kyber HW is also our work) and NuScenes lidarseg benchmark.
- Semantic 3D Scene Completion: Proposed a Minkowski-Engine based Sparse Convolution Network to complete the 3D space from LiDAR point cloud, our method S3CNet (named as Noah Canada) is currently state-of-the-art in Semantic-KITTI benchmark.
- Topological Graph Map: Developed a whole pipeline to build 3D topological graph map, including curvature based intersection detector and road segmentation.
- Real-time Curb Detection: Proposed a real-time curb detection method to detect the sidewalk curb for autonomous driving car.

Mobile Robotics Lab, McGill University

Research Assistant, Supervisor: Gregory Dudek, David Meger

- Deep Sparse Bundle adjustment: Using depth estimator (MonoDepth2), as inverse depth prior for schur complement to optimize the pose without solve the pseudo-inverse of Hessian matrix. We applied LBFGS as optimizer backend.
- NavGuideNet: A synthesized hierarchical neural network for autonomous navigation in complex environment and variant landscapes (tested in field/underwater environments). Backbone encoder is Resnet18, latent code was concaternated with control signals and decoder is de-convolution network (transposed convolution).
- Deep RL For Visual Navigation (Sim2Real): introduce latent space in CAD2RL as attention layer to help policy converge faster, evaluated on multiple policy gradient based backends (DDPG, A3C) in continuous action space, simulated in Microsoft AirSim.

iLab Tongji/University of South California

Research Assistant, Supervisor: Jianwei Lu, Laurent Itti

- SLAM Fusion: Vision (monocular) LiDar fusion with direct method (jointly optimize optical flow with Sparse Bundle Adjustment on ORB features) extra constraint from LiDar helps eliminating depth from null space.
- Visual SLAM with Saliency: joint optimizing the graph (G2O) with salient voting as extra binary edges.

UCLA

Research Assistant, Supervisor: Yi Xing

• Code Parallelization: optimized their RNA analysis tool, [stable release (rMATS 3.0.9], binding the large matrix calculations with C11 (SSE/AVX vectorization, Intel) and CUDA

May 2020

Online

Montreal. Canada

Aug 2015 - Aug 2017

Shanghai, China

April 2021 - Now

Shanghai, China Feb 2021 - April 2021

Markham, Canada

Jul 2019 - Feb 2021

Sep 2017 - Aug 2020

Shanghai, China, Los Angeles, USA Apr 2015 - Jul 2017

Montreal, Canada

Los Angeles, USA

Jul 2015 - Jan 2016

PROJECTS

- **Sparse AutoDiff Library**: Contribute to MinkowskiEngine with StandfordVL lab. Developed and tested part of visualization (using Open3D), sparse tensor operator and semantic segmentation demo baselines.
- Visual SLAM: Comprehensively re-implemented DSO and annotated with exhaustive explains. (github)
- Deep Monocular Dense 3D Reconstruction: Dense 3D reconstruction with monodepth2 initialized Visual Odometry, leveraging traditional photometric consistancy, occlusion discrepancy, and local geometrical-smooth assumptions to optimize depth estimation (LM method) and register 3D map point clouds.
- Abstraction Augmented Deep RL: Abstract rgb image with Unet shaped network to digest image in latent representation, and learn from latent inputs, average convergence time increased 27.3%, maximum reward (10M iterations) is 1.21 times than baseline model without abstraction augmentation, experiments conducted under self-collected dataset from AirSim simulator (github)

PUBLICATIONS AND PATENTS

- [US patent] GP-S3Net: Graph based Panoptic Sparse Semantic Segmentation Network, R. Cheng, R. Razani, T. Enxu, E. Taghavi, B. Liu, ICCV 2021 accepted
- [US patent] (AF)²-S3Net: Attentive Feature Fusion with Adaptive Feature Selection for Sparse Semantic Segmentation Network on Point Cloud, R. Cheng, R. Razani, E. Taghavi, B. Liu, CVPR 2021 arxiv
- [US patent] Semantic-aided LiDAR-based Localization for Autonomous Vehicles, Yuan Ren, R. Cheng, C. Agia, B. Liu, IEEE T-IV 2020 journal accepted
- [US patent] S3Net: A Sparse Semantic Segmentation Network for LiDAR Point Clouds, R. Cheng, R. Razani, B. Liu, submitted to ICRA 2021 paper
- [US patent] Lite-HDSeg: LiDAR Semantic Segmentation Using Lite Harmonic Dense Convolutions, R. Cheng, R. Razani, E. Taghavi, B. Liu, submitted to ICRA 2021 under review
- Abstraction Augmentation for Deep Reinforcement Learning, R. Cheng, F. Shkurti, D. Meger, G. Dudek, IROS 2021 accepted
- [US patent] S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point Clouds, R. Cheng, C. Agia, Y. Ren, X. Li, B. Liu, CoRL 2020 preprint
- Depth prediction for Direct Visual Odometry, R. Cheng, C. Agia, D. Meger, G. Dudek, CRV 2020 paper
- Navigation in the Service of Enhanced Pose Estimation, Travis Manderson, Ran Cheng, David Meger and Gregory Dudek, ISER 2018, paper
- Vision-Based Autonomous Underwater Swimming in Dense Coral for Combined Collision Avoidance and Target Selection, T. Manderson, J. Higuera, **R. Cheng**, D. Meger, G. Dudek, **IROS 2018**, paper
- [US patent] Integrated LiDAR Perception, Localization, Mapping Solution base on Semantic Segmentation, B. Liu, R. Cheng, Yuan Ren patent submitted 2020
- [US patent] Topological Graph HD Map, R. Cheng, Yuan Ren, B. Liu patent submitted 2020